Illuminating regeneration: noninvasive imaging of disease progression in muscular dystrophy.
نویسندگان
چکیده
Muscular dystrophies are characterized by progressive muscle weakness and wasting. Among the key obstacles to the development of therapies is the absence of an assay to monitor disease progression in live animals. In this issue of the JCI, Maguire and colleagues use noninvasive bioluminescence imaging to monitor luciferase activity in mice expressing an inducible luciferase reporter gene in satellite cells. These cells proliferate in response to degeneration, therefore increasing the level of luciferase expression in dystrophic muscle.
منابع مشابه
P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملmicroRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice.
Skeletal muscle injury activates adult myogenic stem cells, known as satellite cells, to initiate proliferation and differentiation to regenerate new muscle fibers. The skeletal muscle-specific microRNA miR-206 is upregulated in satellite cells following muscle injury, but its role in muscle regeneration has not been defined. Here, we show that mi...
متن کاملCirculating Muscle-specific miRNAs in Duchenne Muscular Dystrophy Patients
Noninvasive biomarkers with diagnostic value and prognostic applications have long been desired to replace muscle biopsy for Duchenne muscular dystrophy (DMD) patients. Growing evidence indicates that circulating microRNAs are biomarkers to assess pathophysiological status. Here, we show that the serum levels of six muscle-specific miRNAs (miR-1/206/133/499/208a/208b, also known as myomiRs) wer...
متن کاملImpaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression.
A group of muscular dystrophies, dystroglycanopathy is caused by abnormalities in post-translational modifications of dystroglycan (DG). To understand better the pathophysiological roles of DG modification and to establish effective clinical treatment for dystroglycanopathy, we here generated two distinct conditional knock-out (cKO) mice for fukutin, the first dystroglycanopathy gene identified...
متن کاملUse of imaging biomarkers to assess perfusion and glucose metabolism in the skeletal muscle of dystrophic mice
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 123 5 شماره
صفحات -
تاریخ انتشار 2013